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Basics of Terrain Surface
• Terrain Surface in Real World: 

‣ Various topographic features: 
- Sand, rock, slope, etc.

3Picture from: wallpapertag.com/mountains-wallpaper

Mountains, hills and valleys in rural areas

Real terrain surfaces are complex.



Basics of Terrain Surface
• Terrain Surface in Digital World: 

‣ 3D geometric object: 
- Consists of ver6ces ( ), edges ( ) and faces ( ): 

•18 ver]ces, 39 edges and 23 faces in the example. 

‣ Each face is a triangle: 
- Assigned a floa6ng point value to represent topographic features: 

•The face weight of the red face is  in the example.

V E F
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Digital Terrain Surface Example

This kind of terrain surface is called 
weighted terrain surfaces. w=1.1



Basics of Terrain Surface
• Geodesic Path/Distance: 

‣ The geodesic path between two given points is the shortest path on the 
terrain surface. 
-  (red path) is the geodesic path between  and . 

‣ The geodesic distance (denoted by ) between two given points is 
the length of their geodesic path. 

• Arbitrary point-to-arbitrary point distance queries (A2A queries): 

‣ The geodesic distance queries between two given 
arbitrary surface points.

GP s t
dg( ⋅ , ⋅ )
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Geodesic Path/Distance Example



Mo]va]on
• Geodesic distances are essen6al to many high-level applica6ons: 

‣ Geographical Informa6on System (GIS): 
- compute the travel cost between two places; 
- study travel paJerns of animals based on residen]al sites.

6Picture from: https://www.edx.org/course/gis-foundations
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Mo]va]on
• Geodesic distances are essen6al to many high-level applica6ons: 

‣ Geographical Informa6on System (GIS): 
- compute the travel cost between two places; 
- study travel paderns of animals based on residen]al sites. 

‣ Spa6al data mining: 
- check spa]al co-loca]on paderns; 
- Clustering objects on terrain sufaces. 

‣ Scien6fic 3D modeling: 
- analyse key features based on distances between reference points.  

‣ etc. 
• Many of them have no restric6on on query points: 

‣ Any surface points can be regarded as query points.
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There is a need to process 
A2A queries efficiently.



Exis]ng Studies
• There is no efficient algorithm for calcula]ng the exact geodesic distance on 

weighted terrain surfaces: 

‣ 3D quadra6c programming model [SIGSPATIAL’ 2021]. 

• Follow the exis]ng studies, we focus on finding approximate geodesic 
distance (denoted by ) with theore6cal guarantees: 

‣ Introduce Steiner points (blue auxiliary points) [Algorithmica’ 2001]: 
- Obtain a graph and run shortest path algorithm on it.

d̃g( ⋅ , ⋅ )

10Geodesic Path/Distance Example 

Edge weights are calculated 
based on face weights.

69.71 seconds for distance 
query passing only 5 faces.



Exis]ng Studies
• Approximate Geodesic Distance Algorithms: 

‣ On-the-fly Algorithms: 
• Fixed Scheme (FS). [Algorithmica’ 2001] 
• Unfixed Scheme (US). [J. ACM’ 2005]  
• K-Algorithm (K-Algo). [VLDB’ 2015] 

‣ Index-based Algorithms: 
• Steiner-Point Oracle (SP-Oracle). [ESA’ 2011] 
• Space-Efficient Oracle (SE-Oracle). [SIGMOD’ 2017]
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Deficiency of Exis]ng Studies
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Queries are processed online 
without any pre-computa6on.



Deficiency of Exis]ng Studies
• Approximate Geodesic Distance Algorithms: 

‣ On-the-fly Algorithms: 
• Fixed Scheme (FS). [Algorithmica’ 2001] 
• Unfixed Scheme (US). [J. ACM’ 2005]  
• K-Algorithm (K-Algo). [VLDB’ 2015] 

‣ Index-based Algorithms: 
• Steiner-Point Oracle (SP-Oracle). [ESA’ 2011] 
• Space-Efficient Oracle (SE-Oracle). [SIGMOD’ 2017, TODS’ 2022]
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On a dataset with only 3,696 
ver6ces (with skinny faces), about 
37.48 seconds and 4.32 seconds 
are required for US and K-Algo, 

respec6vely.

Single query needs about 2.13 
seconds for a 1-million-face 

dataset.
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Index too many points for 
A2A queries.



Deficiency of Exis]ng Studies
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Only efficient for pre-defined 
query points.

More than 3 hours pre-processing 6me 
and 256 GB memory for a terrain with 

10,243 ver6ces (for A2A queries).



Our Contribu]on
• Propose an index-based algorithm for A2A distance queries: 

‣ Called Efficient Arbitrary Point-to-Arbitrary Point Oracle (EAR-Oracle). 

‣ Outperforms the state-of-the-art index-based algorithm by 2 orders of 
magnitude in terms of building 6me and space consump6on; 

‣ Outperforms the fastest on-the-fly algorithm by 1 order of magnitude in 
terms of query 6me.
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Our Contribu]on
• Propose an index-based algorithm for A2A distance queries: 

‣ Called Efficient Arbitrary Point-to-Arbitrary Point Oracle (EAR-Oracle). 

‣ Outperforms the state-of-the-art index-based algorithm by 2 orders of 
magnitude in terms of building 6me and space consump6on; 

‣ Outperforms the fastest on-the-fly algorithm by 1 order of magnitude in 
terms of query 6me. 

• Thorough theore6cal analysis: 

‣ Building 6me, space consump6on, query 6me and distance error. 

• Extensive experimental studies: 

‣ On several real datasets with different scales; 

‣ On factors influencing the performance of EAR-Oracle.
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Related Studies Comparison
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Algorithm Type Weighted  
Terrain

Index  
Time

Query  
Latency

Scalability Result 
Quality

FS On-the-fly ✓ - ✗ ✓ ✓
US On-the-fly ✓ - ✗ ✗ ✓

K-Algo On-the-fly ✗ - ✗ ✗ ✓
SP-Oracle Index ✓ ✗ ✓ ✗ ✓
SE-Oracle Index ✗ ✗ ✓ ✗ ✓

EAR-Oracle Index ✓ ✓ ✓ ✓ ✓

Our proposed algorithm overcomes the drawbacks of 
exis6ng studies and has the best overall performance.
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Pre-processing phase

Query phase



EAR-Oracle Pre-processing Phase
• Build a base graph (denoted by ) for distance metric approxima6on:GB

21

There is no efficient algorithm for exact 
solu6on on weighted terrain surfaces.



EAR-Oracle Pre-processing Phase
• Build a base graph (denoted by ) for distance metric approxima6on: 

‣ Place  Steiner points uniformly on each angle-bisector of each face: 
- Used to approximate the path inside a single face.

GB

m

22

Example of base graph for =3.m

, ,  are 3 Steiner points on the 
bisector of .

p1 p2 p3
∠BAC



EAR-Oracle Pre-processing Phase
• Build a base graph (denoted by ) for distance metric approxima6on: 

‣ Connect edges between Steiner points on adjacent faces; The weighted 
geodesic paths are calculated based on the Snell’s Law;

GB
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Example of base graph for =3.m

Also known as the law of reflec6on. It could be 
used to calculate the exact geodesic path for 

adjacent faces [J.ACM’2005].



EAR-Oracle Pre-processing Phase
• Par66on the terrain surface into several boxes in 2D ( -  plane): 

‣ The terrain surface is a planar graph;
x y

24

We could naturally par66on 
the terrain on -  plane.x y



EAR-Oracle Pre-processing Phase
• Par66on the terrain surface into several boxes in 2D ( -  plane): 

‣ When the query source and the query des]na]on are close (in the same 
box), they have spa6al locality;

x y

25

On-the-fly algorithms have 
good performance.



EAR-Oracle Pre-processing Phase
• Par66on the terrain surface into several boxes in 2D ( -  plane): 

‣ When the query source and the query des]na]on are distant (in different 
boxes), their geodesic path will go through certain boundaries of some 
boxes.

x y
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We only need to focus on a few 
points near boundaries.



EAR-Oracle Pre-processing Phase
• Select several terrain ver6ces close to the box boundaries: 

‣ Previous studies index a lot of Steiner points for theore]cal guarantee;

27

On a small terrain with 1,440 ver6ces, 
43,407 Steiner points are introduced.



EAR-Oracle Pre-processing Phase
• Select several terrain ver6ces close to the box boundaries: 

‣ Previous studies index a lot of Steiner points for theore]cal guarantee; 

‣ If we index the Steiner points near the box boundaries, we s]ll need a lot 
of pre-processing 6me and space consump6on.
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On a small terrain with 1,440 ver6ces, 
43,407 Steiner points are introduced.



EAR-Oracle Pre-processing Phase
• Select several terrain ver6ces close to the box boundaries: 

‣ We slightly move the Steiner points to terrain ver6ces (on the same face) 
near the boundaries: 
- The two paths are very similar.

29

𝑏𝑜𝑥𝑠 𝑏𝑜𝑥𝑡

Steiner points

Boundary terrain 
vertices

Only need to index 
some terrain ver6ces!

We derived distance 
error of the two paths.

Example of moving Steiner points



EAR-Oracle Pre-processing Phase
• Select several terrain ver6ces close to the box boundaries: 

‣ These terrain ver]ces near the boundaries are called highway nodes;

30

A subset of terrain ver6ces (The 
amount of highway nodes is small).



• Construct a highway network to index distances between highway nodes: 

‣ Generate edges between highway nodes according to geometric property: 
- Use center distance as approxima6on.

c1(p1)

EAR-Oracle Pre-processing Phase

31

c2(p2)

sufficiently large center distance

d̃g(p1, p2) ≈ d̃g(c1, c2)

,  are two highway nodes and they are centers of two surface disks.  
 and  are two arbitrary points in the two disks, respec]vely.

c1 c2
p1 p2

c1

p1

c2

p2
center distance



EAR-Oracle Pre-processing Phase
• Construct a highway network to index distances between highway nodes: 

‣ Obtain a lightweight highway network with distance guarantee.

32

Avoid all-pair distances 
computa6on. 



EAR-Oracle Pre-processing Phase
• Build a distance map to index distances between highway nodes and Steiner 

points: 

‣ For each box, index the distance between each highway node on its 
boundaries and Steiner points on the faces inside it;

33



EAR-Oracle Pre-processing Phase
• Build a distance map to index distances between highway nodes and Steiner 

points: 

‣ For each box, index the distance between each highway node on its 
boundaries and Steiner points on the faces inside it;

34

Any surface point can reach the highway 
network via a single Steiner point.



EAR-Oracle Query Phase
• We are given two arbitrary surface points  and . The geodesic distance 

query  taken  as the source and  as the des6na6on is called A2A 
query. 

• Based on the par]]on, the queries could be divided into two types: 

‣ The inner-box query (  in the example); 

‣ The inter-box query (  in the example).

s t
Q(s, t) s t

Q(s1, t1)
Q(s2, t2)
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Determine two different 
query processing rou6nes.

Two types of distance queries



EAR-Oracle Query Phase
• The inner-box query ( ): 

‣ Adopt Dijkstra’s algorithm on base graph .

Q(s1, t1)
GB

36

Efficient due to spa6al 
locality.

Inner-box query example



EAR-Oracle Query Phase
• The inter-box query ( ): 

‣ it is three-fold: 
- From  to highway node (distance map); 
- From highway node to highway node (highway network); 
- From highway node to  (distance map).

Q(s2, t2)

s2

t2

37

first-fold
second-fold

third-fold

Inter-box query example



EAR-Oracle Query Phase
• The inter-box query ( ): 

‣ Construct a query graph  by adding edges (from the distance map) to 
the highway network; 

‣ Perform Dijkstra’s algorithm on query graph .

Q(s2, t2)
GQ

GQ
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Efficient since  is 
lightweight.

GQ

Inter-box query example



Theore]cal Analysis
• Let  be the amount of terrain faces and  be the user-defined error bound: 

‣ The building 6me of EAR-Oracle is linearithmic to ; 

‣ The space consump6on of EAR-Oracle is linear to ; 

‣ The query 6me of EAR-Oracle is linearithmic to the amount of highway 
nodes; 

‣ The rela6ve distance error of EAR-Oracle is very close to .

N ϵ
N

N

ϵ
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The amount of highway nodes 
is much less than .N

|d̃g(s, t) − dg(s, t)|
dg(s, t)

≈ ϵ
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Experimental Result
• Tested Algorithms: 

‣ On-the-fly algorithms: 
- FS [Algorithmica’ 2001]  

•Fastest on-the-fly algorithm. 
- US [J. ACM’ 2005]  

•Snell’s law applied, -bounded distance error. 
- K-Algo [VLDB’ 2015]  

• -bounded distance error. 

‣ Index-based algorithms: 
- SE-Oracle [SIGMOD’ 2017, TODS’ 2022]  

•State-of-the-art index-based algorithm. 
- EAR-Oracle [Proposed] 

ϵ

ϵ
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Experimental Result
• Datasets: 

‣ We adopt several real terrain surfaces: 

• Measures: 

‣ Building Time, Space Consump6on, Query Time and Rela6ve Error.

42



Experimental Result
• Result on unweighted terrain datasets (under default parameter seqng): 

‣ EAR-Oracle outperforms SE-Oracle by 2 orders of magnitude in terms of 
building 6me and space consump6on. 

‣ EAR-Oracle outperforms other tested algorithms by more than 1 order of 
magnitude in terms of query 6me. 

‣ All tested algorithms have small rela6ve error.
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Experimental Result
• Result on weighted terrain datasets (under default parameter seqng): 

‣ Fixed Scheme (FS) is selected as the pivot for error comparison (exact 
distance is expensive to compute); 

‣ Similar results as the unweighted datasets.
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Experimental Result
• Scalability test on high resolu]on EP dataset (w.r.t number of faces): 

‣ SE-Oracle exceeds memory budget for a dataset with only 200,000 faces; 

‣ EAR-Oracle can scale up to dataset with 1 million faces; 

‣ EAR-Oracle outperforms all on-the-fly algorithms by more than 1 order of 
magnitude in terms of query 6me.
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Conclusion
• The geodesic distance problem is both fundamental and important for many 

high-level applica]ons; 

• We propose EAR-Oracle: 

‣ No assumption on query points; 

‣ Outperforms the state-of-the-art algorithms; 

‣ Can scale up to terrain surfaces with millions of faces; 

‣ Quality guarantee on result.
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Thanks for your aden]on!
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Support materials
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Theore]cal Analysis
• Let  be the  nota]on hiding terrain related constants: 

‣ The building 6me of EAR-Oracle is: 

- : 

•For : larger terrain dataset yields longer building ]me; 
•For : 6ghter (smaller) error bound yields longer building ]me; 
•For : more auxiliary points yields longer building ]me; 
•For : more highway nodes yields longer building ]me;

O* O

O*(ζmN log(mN) +
N log N

ϵ2
+ N log N +

N
ϵ2

)

N
ϵ
m
ζ
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Theore]cal Analysis
• Let  be the  nota]on hiding terrain related constants: 

‣ The space consump6on of EAR-Oracle is: 

- : 

•For : larger terrain dataset yields more space; 
•For : 6ghter (smaller) error bound yields more space; 
•For : more auxiliary points yields more space; 
•For : more highway nodes yields less space;

O* O

O*(
mN
ζ

+
N
ϵ2

)

N
ϵ
m
ζ
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Theore]cal Analysis
• Let  be the  nota]on hiding terrain related constants: 

‣ The query 6me of EAR-Oracle is:  
- Only related to number of highway nodes; 
- : more highway nodes yields more query ]me.

O* O
O*(ζ log ζ)

ζ
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Theore]cal Analysis
• Let  be the distance error of FS: 

‣ The distance error of EAR-Oracle: 

-

δ

d̃g(s, t) ≤ (1 + ϵ)(dg(s, t) + 2δ)
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Experimental Result
• Effect of  on BM dataset: 

‣ Larger  (looser error bound) yields beJer performance of EAR-Oracle.
ϵ

ϵ
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Experimental Result
• Effect of  on BM dataset: 

‣ Larger  (more boundary ver]ces) yields more building 6me, query 6me 
and less space of EAR-Oracle.

ζ
ζ
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Experimental Result
• Effect of  on BM dataset: 

‣ Larger  (more Steiner points) yields more building 6me, query 6me, 
space consump6on and higher result quality of EAR-Oracle. 

m
m
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